Balanced Subset Sums in Dense Sets of Integers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Subset Sums in Dense Sets of Integers

Let 1 ≤ a1 < a2 < · · · < an ≤ 2n − 2 denote integers. Assuming that n is large enough, we prove that there exist ε1, . . . , εn ∈ {−1,+1} such that |ε1 + · · ·+εn| ≤ 1 and |ε1a1+ · · ·+εnan| ≤ 1. This result is sharp, and in turn it confirms a conjecture of Lev. We also prove that when n is even, every integer in a large interval centered at (a1 + a2 + · · · + an)/2 can be represented as the s...

متن کامل

Probability, Networks and Algorithms Probability, Networks and Algorithms Balanced subset sums of dense sets of integers

Let 1 ≤ a1 < a2 < . . . < an ≤ 2n − 2 denote integers. We prove that there exist ε1, . . . , εn ∈ {−1,+1} such that |ε1 + . . . + εn| ≤ 1 and |ε1a1+ . . .+ εnan| ≤ 1, at least when n is large enough. This result is sharp and, in turn, confirms a conjecture of V.F. Lev. We also prove that more than n/12 consecutive integers can be reperesented as the sum of roughly n/2 elements of the sequence.

متن کامل

A Construction for Sets of Integers with Distinct Subset Sums

A set S of positive integers has distinct subset sums if there are 2|S| distinct elements of the set {∑ x∈X x : X ⊂ S } . Let f(n) = min{maxS : |S| = n and S has distinct subset sums}. Erdős conjectured f(n) ≥ c2n for some constant c. We give a construction that yields f(n) < 0.22002 · 2n for n sufficiently large. This now stands as the best known upper bound on f(n).

متن کامل

On Arithmetic Progressions in Sums of Sets of Integers

3 Proof of Theorem 1 9 3.1 Estimation of the g1 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Estimation of the g3 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Estimation of the g2 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Putting everything together. . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Integer Sets with Distinct Subset - Sums

In Section 1 we introduce the problem of finding minimal-height sets of n natural numbers with distinct subset-sums (SSD), and in Section 2 review the well-known Conway-Guy sequence u, conjectured to yield a minimal SSD set for every n. We go on (Section 3) to prove that u certainly cannot be improved upon by any "greedy" sequence, to verify numerically (Section 4) that it does yield SSD sets f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integers

سال: 2009

ISSN: 1867-0652

DOI: 10.1515/integ.2009.047